

HIGH ALTITUDE BALLOON CARRYING AMATEUR RADIO -A STEM LEARNING PROJECT

THE NASHUA AREA RADIO SOCIETY

Our Sessions

Weekly Format

- A: Project Introduction What will we be doing?
 B: Balloon Physics 1 Forces effecting our HAB's flight and burst altitude
- 2. C: Balloon Physics 2 HAB's weight and burst altitude revisited
 D: The Atmosphere Temperature and Pressure our HAB will encounter
- 3. E: Descent through the Atmosphere Parachute operation
 F: HAB Flight Path Prediction It's mostly about the Jetstream
- G: HAB Tracking and Radios 1 Following our HAB and its data
 H: HAB Tracking and Radios 2 Hands on with Tracking Tools
- 5. I: Space Communications What's up & how do we communicate using it?
 J: Launching Our HAB Final preparations (classroom or during Open House?)
 Amateur Radio Open House
- 6. K: Post-flight Data Analysis (may be two, 1 hour sessions...)L: Preparing Our Project Report

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Project Introduction – What will we be doing?

High Altitude Balloon

What will we be doing?

 Helium filled balloon carries < 4 lb. payload to altitude ~ 100,000+ ft

- Parachute controls decent rate after balloon bursts
- Video of flight using on-board GoPro lightweight camera(s)
- On-board radio transmitter allows in-flight tracking via Internet
 - Flight computer records data throughout the flight
- On-board experiments will help us learn about the atmosphere
- Hands-on activities include
 - Plan the flight path
 - Make design decisions
 - Plan science experiments
 - Test the payload

- Launch, track & recover the payload
- Analyze & present experimental results
- Help to define our goals for additional launches after the initial one

High Altitude Balloon What is it?

Flight Platform & Parachute

HAB During Ascent

High Altitude Balloon Project Weather Balloons

Large Balloon (6-8 ft in diameter on ground) Burst Diameter (30+ ft at final altitude)

High Altitude Balloons

Payload Components

7

Layers of the Atmosphere and Temperature

What we might see

Our HAB is going to reach a maximum altitude of about 30 km, so we explored the lower two layers in the atmosphere

High Altitude Balloons What Will The Flight Be Like?

HIGH-ALTITUDE BALLOON LAUNCH A NASHUA AREA RADIO SOCIETY STEM PROJECT

Vimeo link to HAB Overview video

Predicting the HAB's Flight Path

HAB-2 Flight Path

Actual vs. Predicted

HAB-2 flew further, longer and higher than predicted – Probably not quite enough Helium in the Balloon... (Actual Burst Altitude was ~118,000 ft or ~ 22 mi)

Winchester NH Launch Site

Tracking the HAB – Its All About Radio

Predictions

- On board radios provide actual position to ground stations for tracking
- GPS = Global Positioning System: HAB location and altitude
- APRS = Automatic Position Reporting
 System: Relays GPS data to ground
 stations
- We with use Amateur Radio Frequencies to track our HAB and receive data

APRS

HAB Launch and Recovery

What will it be like?

- We will gather at the launch site on at 9 am to prepare for an 11 am launch
- ✓ Our HAB's flight will take 2 ½ 3 hours
- ✓ Will use tablets, smartphones, or a laptop to track the HAB while it flies

- Our recovery team will be located near the landing point that we predict
- Recovery team uses radio direction finding to locate our HAB

HAM Station Visit

Learn About Communications

- Tour an Amateur Radio station
 and learn about Amateur Radio Communications
- Get on the air and talk to Amateurs around the world
- Make a contact through a satellite in space
- Radio direction finding to locate a hidden radio transmitters
- Learn about what's involved in getting a Ham Radio
 License and what you can do with it

Licensing and New Ham Development: Ham Radio Bootcamp

dit				
TOPICS	DATE			
HT Programming Getting Started with EchoLink Join the Repeater Net Fox Hunting Shack Open House and Tour at AB1OC/AB1QB	Saturday, March 9th 10:00 am - 2:00 pm			
Satellite Operating Session Learn to Operate Digital HF GOTA SOTA (Summits on the Air) Intro	Saturday March 16th starting After the NARS Breakfast (Around 10:00 am) to 2:00 pm			
How to pick a Radio Commercial Antenna Options Group Trip to Ham Radio Outlet in Salem with Elmers	TBD			
Build an Antenna for VHF/UHF How to pick an antenna and tune it up	TBD			
How to setup an HF Station HF Radio Choices Building, tuning, and putting up a first HF Antenna Getting on 6 meters Mobile HF	TBD			
New Ham Contest (ARRL Rookie Roundup SSB)	Sunday, April 14th			
Hands-on Field Day Visit	Friday - Sunday June 21st - 23rd			
Join the Spring HAB Launch	May / June TBD			

License Classes – Sign Up Now!

- Winter/Spring License Class Schedule:
 - General March 23-24
 - Extra April 26-28
- Classes held at Dartmouth-Hitchcock Nashua
- Based on Gordon West License Manuals
- Sign up on <u>www.n1fd.org</u>

- Successful Technician Class held February 23-24!
- 13 students all passed the Technician exam!
- 3 walk-ins for VE session earned Technician, General and Extra licenses
- Thanks to instructors and VEs

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Balloon Physics 1 – Forces Effecting Our HAB's Flight and Burst Altitude

Predicting the HAB's Flight Path

The HAB's Ascent - Balloon Calculator

http://tools.highaltitudescience.com/#

HAB Balloon Calculator Inputs

Input Balloon Size (grams)	 Lift is the amount of force to make the balloon float O Helium is less dense than air 				
Payload Weight (grams, 1-20000)	Lift directly opposes the force				
1060	gravity				
Positive Lift (grams, 1-20000) 1600	also specifying how much				
	 Another way to understand lift to study buoyancy Air is another type of fluic 				
a High Altitude Science project					

In the next sections will briefly explore the force of gravity and buoyancy

The Force of Gravity

Newton and Galileo

YouTube Video

Acceleration Due to Gravity in a Vacuum

The HAB and Projectile Motion

Next, we will examine what causes the balloon to ascend

- During the descent, in the absence of drag from the air, the vertical acceleration of the balloon is due to force of gravity
- Any horizontal accelerations will be due to the Jetstream and prevailing winds
- When our balloon bursts at the edge of space, there will be very little air.
 Just after burst, our HAB should fall at a rate much closer to g; the gravity acceleration constant.
- Drag force is VERY important. It prevents the balloon from
 accelerating indefinitely and helps it reach a max speed known as terminal velocity. More to come on this later.

YouTube Video

Concept at work: Archimedes' Principle

Archimedes' Principle

Archimedes of Syracuse

- Ancient Greek mathematican
- Shouted *Eureka* when he discovered buoyancy

Archimedes' principle

 the buoyant force of an object is equal to the weight of the fluid displaced by the object

Buoyant Force Example

Buoyant Force Quiz

If a an ice cube floats in a glass of water, what happens to the level of the water in the glass when the ice melts?

Take a few minutes and work with a friend to try and figure it out.

Buoyant Force Quiz Solution

Ice is less dense than liquid H₂O, so ice floats

- The displaced water volume equals the volume of part 2 but has a mass equal to the ice cube's (part 1 + part 2) mass
- Now, look at what happens when the ice melts:
 - Its mass does not change, it is still (mass of part 1 + mass of part 2)
 - Part 1 and part 2 turn into liquid water
- But, we said above that the part 1 + part 2 mass of liquid water has the same volume as part 2.
- Therefore, the level remains the same

Application to HAB

This principle also works in the air; this is why hot-air and helium balloons rise.

Air is mostly a mix of Nitrogen and Oxygen. Why does Helium make a balloon float?

Copyright @ 2005 Pearson Prentice Hall, Inc.

Our HAB's ascent rate will be nearly constant – why? Why does that HAB stop ascending at high altitude?

Back to the Online Calculator...

http://tools.highaltitudescience.com/#				
Input	Output			
Balloon Size (grams)	Required Helium (in cubic feet)			
Payload Weight (grams, 1-20000)	149.55362187817832			
1060	Estimated Burst Altitude (in meters) 32410			
Positive Lift (grams, 1-20000)				
1600	Average Ascent Rate (in meters/second) 5.690339463336963 Ascent Time (in minutes)			
1000				
	94.92696703720007			
a High Altitude Science project				

Log onto the website and begin to experiment with the numbers... Our HAB's ascent rate will be nearly constant – why?

Engineering the HAB's Burst Altitude

- Keep the balloon size (1,500 g), and payload mass (1,060 g) fixed.
- Using the calculator, vary the lift as follows 1,000 g; 1,300 g; 1,600 g and record the following results for each lift –
 - Amount of Helium required in cubic feet
 - Average Ascent Rate in meters/sec
 - Burst Altitude in meters and in feet
 - Ascent Time in minutes
- What can we say about how changing the amount of lift effects the other results?
- To allow the cameras to capture the entire flight, we need to limit the ascent time to no more than <u>100 minutes</u>.
 - What is the <u>highest altitude</u> we can obtain given this limitation and <u>how much lift</u> should we use?

Engineering the HAB's Burst Altitude

http://tools.highaltitudescience.com/#

Positive Lift (g)	Required Helium (ft³)	Ascent Rate (m/s)	Burst Altitude (m)	Burst Altitude (ft)	Ascent Time (min)
1,000 g	128 ft ³	4.74 m/s	33,460 m	109,750 ft.	118 min.
1,300 g	139 ft ³	5.26 m/s	32,910 m	107,950 ft.	104 min.
1,600 g	150 ft ³	5.69 m/s	32,410 m	106,300 ft.	95 min.
					100 mins
	34				

Engineering the HAB's Burst Altitude

http://tools.highaltitudescience.com/#

Change in Baseline	Positive Lift (g)	Required Helium (ft³)	Ascent Rate (m/s)	Burst Altitude (m & ft)	Ascent Time (min)
Baseline (1,060 g payload)	1,425 g	143 ft ³	5.4 m/s	32,690 m/ 107,200 ft	100 mins
3,000 g balloon	2300 g	229 ft ³	5.9 m/s	35,650 m/ 116,900 ft	100 mins
900 g payload	1400 g	137 ft ³	5.5 m/s	33,010 m/ 108,300 ft	100 mins
Longer ascent	600 g	114 ft ³	3.8 m/s	34,270 m/ 112,400 ft	150 mins
All of above	950 g	174 ft ³	4.2 m/s	37,580 m/ 123,300 ft	150 mins

Engineering the HAB's Burst Altitude – Home Assignment

Our baseline is a 1,500 g balloon, a 1,060 g payload, and a 105 minute maximum ascent time. Change only one of these at a time and find the best lift, maximum burst altitude, and the other parameters in the table.

- 1. What happens if we use a 3,000 g balloon?
- 2. What happens if we can lighten the HAB to 900 g?
- 3. What happens if we change the maximum ascent time limit to 150 minutes?
- 4. What happens if we change all three parameters?

What changes had the most and the least effect? Why?

1 meter = 3.28 ft

37

Engineering the HAB's Burst Altitude

http://tools.highaltitudescience.com/#

Change from Baseline	Positive Lift (g)	Required Helium (ft ³)	Ascent Rate (m/s)	Burst Altitude (m & ft)	Ascent Time (min)
3,000 g balloon					100 mins
900 g payload					100 mins
Longer ascent					150 mins
All of above					150 mins
	Plan to share your results at the start of our next				

session.
HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Balloon Physics 2 – Our HAB's Weight and Burst Altitude Revisited

Predicting the HAB's Flight Path

The HAB's Ascent - Balloon Calculator

http://tools.highaltitudescience.com/#

40

HAB Online Calculator

Engineering the HAB's Burst Altitude

http://tools.highaltitudescience.com/#

Positive Lift (g)	Required Helium (ft ³)	Ascent Rate (m/s)	Burst Altitude (m)	Burst Altitude (ft)	Ascent Time (min)
1,000 g	128 ft ³	4.74 m/s	33,460 m	109,750 ft.	118 min.
1,300 g	139 ft ³	5.26 m/s	32,910 m	107,950 ft.	104 min.
1,600 g	150 ft ³	5.69 m/s	32,410 m	106,300 ft.	95 min.
1,425 g	143 ft ³	5.45 m/s	32,690 m	107,200 ft.	100 mins

We'll keep the Balloon Size fixed at 1,500 g and the HAB's Payload Weight fixed at 1,060 g.

HAB Online Calculator

Engineering the HAB's Burst Altitude

http://tools.highaltitudescience.com/#

Change in Baseline	Positive Lift (g)	Required Helium (ft³)	Ascent Rate (m/s)	Burst Altitude (m & ft)	Ascent Time (min)
Baseline (1,060 g payload)	1,425 g	143 ft ³	5.4 m/s	32,690 m/ 107,200 ft	100 mins
3,000 g balloon	2300 g	229 ft ³	5.9 m/s	35,650 m/ 116,900 ft	100 mins
900 g payload	1400 g	137 ft ³	5.5 m/s	33,010 m/ 108,300 ft	100 mins
Longer ascent	600 g	114 ft ³	3.8 m/s	34,270 m/ 112,400 ft	150 mins
All of above	950 g	174 ft ³	4.2 m/s	37,580 m/ 123,300 ft	150 mins

How the Balloon Is Designed To Burst

Weather balloon being inflated by a leaf blower

- Reduced pressure causes the balloon to expand.
- Weather balloons are specially designed to be able to expand to a very large diameter. Typically they are made from latex.
- A weather balloon that starts out at 2 m (~ 6 ft) in diameter at launch can expand to a diameter of up to 10 m (over 30 ft)!
- As the balloon climbs to the edge of space it eventually expands to the point where it bursts. Our payload then falls back to earth under a parachute.

Burst Altitude Video

Balloon bursting at altitude

High altitude near space balloon - Burst!

Balloon Bursting <u>YouTube Link</u>

High Altitude Balloons

Payload Components

45

HAB Weight

- We need an accurate measure of our HAB platforms weight for the Balloon Calculator
- Let's weight each of the components
- Let's weight the assembled HAB
 - How does this compare to sum of the parts?
- What are the real constrains for our HAB's flight?
 - Flight time limit and what determines this?
- Back to the Balloon Calculator lets plug in our new payload weight including the planned science experiments

Lets weight the HAB components on multiple scales and check our results

Back to the Online Calculator...

Input	Output		
Balloon Size (grams)	Required Helium (in cubic feet)		
Payload Weight (grams, 1-20000)	149.55362187817832		
1060	Estimated Burst Altitude (in meters)		
Positive Lift (grams, 1-20000)	32410		
1600	Average Ascent Rate (in meters/second)		
	5.690339463336963		
	Ascent Time (in minutes)		
	94.92696703720007		
a High Altitude Science project			

Plug in our new payload weight including the planned science experiments and determine lift required for 100 min accent.

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

The Atmosphere – Temperature and Pressure our HAB will encounter

Layers of the Atmosphere

Video: Layers of the Atmosphere

Video on YouTube

Pressure Phenomena

- The molecules that make up the atmosphere are pulled close to the earth's surface by gravity.
- The atmosphere is concentrated at the surface and thins rapidly with altitude.
- Air pressure is a measure of the weight of the molecules above you.
- As you move higher, there are fewer molecules above you, so the air pressure is lower.
- At 10 miles up, 90% of the atmosphere is below you.

Pressure Changes in the Atmosphere

Atmosphere Layers

Temperature Changes

- Payload passes through distinct layers in atmosphere
- Troposphere to ~10 km
 - Temperature falls
- Tropopause
 - Constant temperature for 0.2 – 0.3 km
- Stratosphere
 - Temperature rises

Temperature Changes in the Atmosphere

Atmosphere Layers

Temperature Changes and Why They Happen?

- The troposphere is warmer near the Earth's surface because heat from the Earth warms this air.
- As the altitude increases the number of air molecules decreases, thus the average energy decreases. The results is a decrease in air temperature with an increase of altitude.
- From 10-20 km the atmosphere is stable. This region is called the tropopause.
- From 20-50 km is the <u>stratosphere</u>.
 Ozone is concentrated in this layer and it absorbs UV light from the Sun.
- More light is absorbed at higher altitudes compared to the lower stratosphere, so the temperature increases.

Atmosphere Phenomena

Measurements From Another HAB Flight

Pressure and Temperature

56

Relating Latitude and Longitude to Location

- Rules of Thumb:
 - Degrees of latitude are parallel so the distance between each degree remains almost constant.
 - But since degrees of longitude are farthest apart at the equator and converge at the poles, their distance varies greatly.
 - Each degree of latitude is approximately 69 miles (111 kilometers) apart
 - A degree of longitude is widest at the equator at 69.172 miles (111.321 km) and gradually shrinks to zero at the poles.

Atmosphere Phenomena What Will Our Flight Computer Record?

- The HAB's computer tells us the balloon's **Pressure and Temperature** current location and atmospheric conditions
 - Position, Heading and Speed
 - Altitude
 - Temperature and Pressure
 - New reading recorded every 6 seconds
 - Read data from SD card after recovery
- APRS Transmitter also sends data to

ground

Actual HAB Flight Computer Data

, Latitude ,Longitude ,Head,Km/h, Alt-m ,Lock,Temp C,Pa . Time Date 04/08/17,01:16:48,+042.71179,-071.59027,0148,0000,+000107,0003,+016.9,098418 04/08/17,01:16:54,+042.71178,-071.59024,0148,0000,+000110,0003,+016.0,098426 04/08/17,01:17:00,+042.71177,-071.59025,0148,0000,+000108,0003,+015.3,098436 04/08/17,01:17:06,+042.71176,-071.59025,0148,0000,+000107,0003,+014.4,098441

> We will compare HAB flight data to our predictions to see how well they match and we will analyze and explain any differences.

HAB-2 Atmospheric Measurements

HAB-2 Speed Measurements

Ground and Descent Speed

- Ascent rate did not change much between launch and burst
- Jetstream winds increased ground speed significantly
 - ~35,000 50,000 ft
 - Max of ~100 mph!
- Not enough air above 50,000 ft to move HAB-2 along ground
- Descent after burst was very rapid until about 50,000 ft

			Ground		Ascent/	
	Time	Time After	Speed		Descent	
Date	(UTC)	Launch	(mph)	Altitude (ft)	Rate (mph)	Notes
10/28/17	18:21:54	3:13:24	25	954	-12	
10/28/17	18:22:00	3:13:30	22	859	-11	500 AGL
10/28/17	18:22:06	3:13:36	7	768	-10	
10/28/17	18:22:12	3:13:42	7	666	-12	
10/28/17	18:22:18	3:13:48	15	567	-11	200 ft AGL
10/28/17	18:22:24	3:13:54	23	469	-11	
10/28/17	18:22:30	3:14:00	19	351	-13	Touchdown!

- Parachute descent rate was about 12 mph at landing
 - About what we expected

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Descent through the Atmosphere – Parachute operation

Everything Falls At The Same Rate

Movie: Misconceptions About Falling Objects

Danger, Falling Objects!

Movie Explaining the Effect of Air Resistance

FPISO

Danger! Falling Objects: Crash Course Kids #32.1

The air drag force is what prevents objects (like a feather and coin) from falling at the same rate when dropped from rest

OBJECTS

Physics in a Very Large Vacuum Chamber

Movie showing the ball/feather experiment

The Air Drag Force

- It's the friction force on an object moving through air (or a fluid)
- Although we often ignore air resistance (*R*), it is usually significant
 m in real life.
- **R** depends on:
- mg

R

- Speed (directly proportional to v²).
- cross-sectional area
- air density
- other factors like shape

Terminal Velocity

Force Diagram

Drag force eventually balances force of gravity

Understand the physics of terminal velocity and understand how to calculate it from our models

Terminal Velocity

TERMINAL VELOCITY

Drag Force on Balloon

$$F_{\mathrm{D}} = rac{1}{2}
ho CAv^2$$

Easy To Determine

- Drag Coefficient (C)
 - O Usually 0.5 0.7
- Area of parachute (A)
 - Balloon Diameter = 1 m
 - o Balloon Area = 0.79 m^2

Harder To Determine

- Air density (rho) at different altitudes
- Depends on:
 - Air pressure
 - Air temperature

Focus on how air density varies with altitude

Air Density In The Atmosphere

Density

Density decreases with increasing altitude because there is less atmosphere (air molecules) at higher altitudes

Another View of Air Density In the Atmosphere

Uses of Parachutes

Space shuttle returning from a mission. It uses a parachute to help slow it down while on the runway

Parachute Performance

- Need to keep terminal velocity to a maximum of 7 m/s or ~ 16 mph
 - Depends on parachute size (ours' is 1 m or ~ 36" in diameter)
 - Depends on payload weight
- Need to keep combination of ascent plus decent time to a total of less that 2-1/2 hours (150 minutes)
- Drag Table for our Parachute (assuming max. altitude of 100,000 ft)

72

Payload Weight		Landing Speed	Decent Time from 100,000 ft	
	0.6 kg / 1.3 lb	4.8 m/s ~ 11 mph	50 minutes	
	0.8 kg / 1.8 lb	5.5 m/s ~ 12 mph	44 minutes	
	1.0 kg / 2.2 lb	6.2 m/s ~ 14 mph	39 minutes	
	1.2 kg / 2.6 lb	6.8 m/s ~ 15 mph	36 minutes	
	1.3 kg / 2.9 lb	7.1 m/s ~ 16 mph	35 minutes	
	1.4 kg / 3.1 lb	7.3 m/s ~ 16.3 mph	33 minutes	

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Predicting our HAB's Flight Path – Its mostly about the Jetstream

Predicting the HAB's Flight Path

HAB Path Prediction Dependencies

- nchester Richmond Warwick 78 Warwick 78 Royalston 78 Royal
- from Balloon Calculator and Parachute Table
- Understand the influence of the Jetstream
 - A very difficult technical problem
 - Use online resources

✓ Use estimates of ascent

& descent times/speeds

- Online prediction calculators and tools
 - Determine suitable starting points
 - Use tool to predict flight path, where balloon is expected to burst, and eventually land
 - Use results balloon calculator as inputs

Jetstream Explained

Recent Jetstream Forecast

Current Jetstream Forecast

Forecasting the Jetstream is difficult, so let's leave it to the experts; we'll use their tools and results

Relating Latitude and Longitude to Location

• Rules of Thumb:

- Degrees of latitude are parallel so the distance between each degree remains almost constant.
- But since degrees of longitude are farthest apart at the equator and converge at the poles, their distance varies greatly.
- Each degree of latitude is approximately 69 miles (111 kilometers) apart
- A degree of longitude is widest at the equator at 69.172 miles (111.321 km) and gradually shrinks to zero at the poles.

Flight Prediction Software

Flight Prediction Inputs

We'll use an online software package from a HAB prediction site: <u>http://predict.habhub.org/</u>

Flight Prediction Inputs

Launch Site: Winchester, NH elem. School: Lat = 42.767896 / Lon = -72.377026

Importance of Location and Time Inputs

+++ Launch Site: Custom Other Latitude/Longitude -72.377026 42,767896 Set With Map Save Location 145 Launch altitude (m): 00 Launch Time (UTC): 15 Launch Date: 24 Mar 🔻 2018 5.02 Ascent Rate (m/s): 33210 Burst Altitude (m): Use Burst Calculator 6.32 Descent Rate (m/s): **Run Prediction**

- Need to specify *when* and *where* because Jetstream changes daily
- Most online tools only accurate to within 5 days due to changing Jetstream conditions
- Keep re-running predictions as time gets closer to be accurate

It's essential to keep re-running predictions in order to see if the predicted path and outputs stabilize as launch day approaches

HAB Flight Parameters

- Balloon Size: 1500 g
- Payload weight including parachute: 930 g
- Positive Lift: 1150 g
- Burst altitude: 33,420 m a.s.l.

(~ 109,600 ft. or ~20.8 mi)

- Required Helium: 129 cu. ft.
- Average Ascent Rate: 5.07 m/s
- Ascent time: 110 mins
- Descent time: 41 mins
- Final descent speed: 5.92 m/s (~ 14 mph)
- Total flight time: 151 mins (2 hrs and 31 mins)

These parameters are conservative and should keep our HAB's total flight time at 2-1/2 hours and our landing speed safe.

Running the Prediction Tool

 Website starts you in the UK:
 Zoom out using mouse and move map to MA or NH We'll use an online software package from a HAB prediction site:

http://predict.habhub.org/

- Click Set With Map in order to use the mouse to click the balloon's starting point or use Lat/Lon coordinates
 - Winchester, NH School: Lat/Lon = 42.767896, -72.377026 (alt. 145 m)
 - Bennington, VT School: Lat/Lon = 42.906806, -73.18856 (alt. 258 m)
- Our Launch Altitude in Winchester, NH would be 145 m (from web)
- Select a Launch Time (UTC) and Launch Date
 - Look UTC up online in case your unfamiliar
 - Right now, 11 am ET would be 15:00 UTC
- Use results from High Altitude Science Balloon Calculator and feed into Ascent Rate and Burst Altitude
- Use the parachute chart to estimate the *Descent Rate*
- Run the Prediction!

Interpreting the Results

- Move your mouse along the path and observe how the values in the image above will change.
 - Note the flight time. Is this in line with maximum flight time? If not, what can you vary to change it?
- Click on the **CSV** button. This will export the flight path as an Excel file.

Working With the Exported File

• The Excel file will have **four columns**

- (A) Raw Time (in seconds)
- (B) Longitude (in degrees)
- (C) Latitude (in degrees)
- (D) Altitude (in meters)
- The time column (A) the absolute time in seconds. These number change by the same amount for each row.
- Create a new column (E), that begins with 0 and each successive entry subtracts the raw *starting* time from the raw *current* time and divides the result by 60 to get minutes after launch
- Create a new column (F), which converts the altitude column (D) to feet (1 meter = 3.28 ft).

• La	abel all of the columns. What's the maximum flight time?						New
	Raw Time (sec)	Lat (deg)	Lon (deg)	Alt (m)	Elapsed Time (min)	Alt (ft)	Elapsed
	1491825600	42.7679	-72.377	0	0.0	0	Time
Uriginal	1491825650	42.7693	-72.3764	263	0.8	861	Column
Time	1491825700	42.7721	-72.3731	525	1.7	1722	
Column	1491825750	42.776	-72.3659	788	2.5	2583	New
Column	1491825800	42.7793	-72.3575	1050	3.3	3444	Altitudo
	1491825850	42.7818	-72.3491	1313	4.2	4305	Annual
	1491825900	42.7838	-72.3407	1575	5.0	5166	Column
		S	ample Piece	of Excel Fi	le		86

Results: Altitude vs Time

Altitude vs Time

Results: Latitude vs Longitude

Results: Longitude vs Time

- This plot provides some insight into the HAB ground speed vs time.
- What does this curve imply about a portion of the HAB's ground speed (and consequently what the Jetstream is doing)?

Hold These Days for Possible HAB-4 Launch

- Saturday/Sunday April 6th/7th
 - Next Ham Bootcamp Saturday April 6th
- Saturday/Sunday April 13th/14th
 - SOTA Activation Scheduled for Saturday April 13th
- Saturday/Sunday April 20th/21st
- More if needed...

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

HAB Tracking and Radios 1 – Following our HAB and its data

Flight Prediction Inputs

We'll use an online software package from a HAB prediction site: <u>http://predict.habhub.org/</u>

HAB Flight Parameters

- Balloon Size: 1500 g
- Payload weight including parachute: 930 g
- Positive Lift: 1150 g
- Burst altitude: 33,420 m a.s.l.

(~ 109,600 ft. or ~20.8 mi)

- Required Helium: 129 cu. ft.
- Average Ascent Rate: 5.07 m/s
- Ascent time: 110 mins
- Descent time: 41 mins
- Final descent speed: 5.92 m/s (~ 14 mph)
- Total flight time: 151 mins (2 hrs and 31 mins)

These parameters are conservative and should keep our HAB's total flight time at 2-1/2 hours and our landing speed safe.

Tracking the HAB

Predictions

- We can use physics to predict the HAB's flight altitude and path
- On board radios provide actual position to ground stations for tracking
- **GPS = Global Positioning System**: HAB location and altitude
 - APRS = Automatic Packet Reporting System: Relays GPS data to ground stations

•

• Contact the FAA to alert them of our plans

Relating Latitude and Longitude to Location

• Rules of Thumb:

- Degrees of latitude are parallel so the distance between each degree remains almost constant.
- But since degrees of longitude are farthest apart at the equator and converge at the poles, their distance varies greatly.
- Each degree of latitude is approximately 69 miles (111 kilometers) apart
- A degree of longitude is widest at the equator at 69.172 miles (111.321 km) and gradually shrinks to zero at the poles.

THE ELECTROMAGNETIC SPECTRUM

Electromagnetic Wave

GPS Satellites

- GPS is a network of 31
 Satellites orbiting at ~20,000 km
- Developed for US military navigation, now used by everyone

- Anywhere on the planet there are at least four GPS satellites visible
 - 3 Satellites required to fix your position on the earth
 - 4 Satellites required for clock deviation correction (1 additional)
 - GPS device uses a process called **Trilateration** to fix your position 101

GPS Tracking Process of Trilateration

Video on YouTube

- If you know how far away you are from satellite A, then you know you must be located somewhere in the Red circle
- If you know the same for Satellites B and C you can fix your position

How GPS Works

It's all about time

- Each GPS satellite transmits its location and the exact time.
- All GPS satellites synchronize operations so that these repeating signals are transmitted at the same instant.
- The signals, moving at the speed of light, arrive at a GPS receiver at slightly different times because some satellites are further away than others.
- The distance to the GPS satellites can be determined by the amount of time it takes for their signals to reach the receiver.
- When the receiver estimates the distance to at least four GPS satellites, it can calculate its position in three dimensions.

Tracking the HAB

Predictions

- We can use physics to predict the HAB's flight altitude and path
- On board radios provide actual position to ground stations for tracking
- GPS = Global Positioning System: HAB location and altitude
 - APRS = Automatic Packet Reporting System: Relays GPS data to ground stations

•

• Contact the FAA to alert them of our plans

APRS: Automatic Packet Reporting System

APRS: Automatic Packet Reporting System Position Information is Determined From GPS

Transmiting APRS Information Using Radio Frequency = 144.390 MHz

Amateur Radio Ground-based *Digipeaters* listen for APRS packets on 144.390 and forward them

APRS Network

Forwarding Position Data From Around the World

APRS Network Operation HAB-1 APRS Video

Digipeaters and iGates Relay Information to The Internet

APRS Tracking HAB-1's Flight to Near Space and Back

APRS Network Operation HAB-1 Flight Track Video

Digipeaters and iGates Relay Information to The Internet

Actual APRS Network Operation Tracking HAB-1

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

HAB Tracking and Radios 2 – Hands on with tracking tools

APRS Packets

Type for Balloon,

Aircraft or Spacecraft

HAB Packets (From our HAB Test Session via aprs.fi)

- Call Sign identifies the person or group licensed to transmit
 - May include information about the type of station they are using

N1FD -11

The Nashua Area Radio Society

2017-04-07 21:16:50 EDT: N1FD-11 > CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO148/000/A=000351RadBug,16C,984mb,3,001 2017-04-07 21:17:50 EDT: N1FD-11 > CQ, WIDE1-1, WIDE2-2, qAR, AB10C-10: 4242.70N/07135.41W0148/000/A=000354RadBug, 10C, 984mb, 3, 002 2017-04-07 21:18:50 EDT: N1FD-11>CO.WIDE1-1.WIDE2-2.gAR.NX1W:!4242.70N/07135.41WO148/000/A=000360RadBug.08C.985mb.3.003 2017-04-07 21:19:50 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,AB1OC-10:!4242.70N/07135.41WO148/000/A=000360RadBug,06C,985mb,3,004 2017-04-07 21:20:50 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,gAR,NX1W:!4242.70N/07135.41WO148/000/A=000347RadBug,05C,985mb,3,005 2017-04-07 21:21:51 EDT: N1FD-11 > CO,WIDE1-1,WIDE2-2,gAR,NX1W:!4242.70N/07135.41WO148/000/A=000344RadBug,05C,985mb,3,006 2017-04-07 21:22:51 EDT: N1FD-11 > CQ, WIDE1-1, WIDE2-2, qAR, NX1W: 14242.70N/07135.41W0174/000/A=000347RadBug, 04C, 985mb, 3,007 2017-04-07 21:23:51 EDT: N1FD-11>CO.WIDE1-1.WIDE2-2.gAR.NX1W:!4242.70N/07135.41WO174/000/A=000344RadBug.04C.985mb.3.008 2017-04-07 21:24:51 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO325/000/A=000347RadBug,04C,985mb,3,009 2017-04-07 21:25:52 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO325/000/A=000351RadBug,04C,985mb,3,010 2017-04-07 21:26:52 EDT: N1FD-11>CO,WIDE1-1,WIDE2-2,gAR,AB1OC-10:!4242.70N/07135.41WO325/000/A=000351RadBug,04C,985mb,3,011 2017-04-07 21:27:52 EDT: N1FD-11>CO,WIDE1-1,WIDE2-2,gAR,NX1W:!4242.70N/07135.41WO325/000/A=000351RadBug,04C,985mb,3,012 2017-04-07 21:28:51 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO325/000/A=000351RadBug,04C,985mb,3,013 2017-04-07 21:29:52 EDT: N1FD-11>CO,WIDE1-1,WIDE2-2,qAR,AB1OC-10:!4242.70N/07135.41WO109/000/A=000351RadBuq,04C,985mb,3,014 2017-04-07 21:30:51 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO109/000/A=000347RadBug,04C,985mb,3,015 2017-04-07 21:31:51 EDT: N1FD-11 > CQ,WIDE1-1,WIDE2-2,qAR, NX1W: 14242.70N/07135.41WO109/000/A=000351RadBug,04C,985mb,3,016 2017-04-07 21:32:51 EDT: N1FD-11 > CQ, WIDE1-1, WIDE2-2, qAR, NX1W: 14242.70N/07135.41WO266/000/A=000360RadBug, 04C, 985mb, 3, 017 2017-04-07 21:33:51 EDT: N1FD-11>CO.WIDE1-1.WIDE2-2.gAR.NX1W:!4242.70N/07135.41WO266/000/A=000360RadBug.04C.985mb.3.018 2017-04-07 21:34:51 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO266/000/A=000360RadBug,04C,985mb,3,019 2017-04-07 21:35:51 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,NX1W:!4242.70N/07135.41WO269/000/A=000364RadBuq,04C,985mb,3,020 2017-04-07 21:36:51 EDT: N1FD-11 > CO,WIDE1-1,WIDE2-2,gAR,NX1W: 4242.71N/07135.41WO269/000/A=000367RadBug,08C,985mb,3,021 2017-04-07 21:37:52 EDT: N1FD-11 > CQ, WIDE1-1, WIDE2-2, qAR, AB1OC-10: !4242.71N/07135.41W0045/001/A=000364RadBug, 13C, 984mb, 3, 022 2017-04-07 21:38:52 EDT: N1FD-11>CQ,WIDE1-1,WIDE2-2,qAR,AB1OC-10:!4242.71N/07135.41W0056/000/A=000367RadBug.15C,984mb,3,023

Actual Packets from our HAB during a test
APRS Packets

Station Service Set Identifiers (SSIDs)

APRS SSID Tells Us What Type Of Device We ARE Tracking.

APRS Packet Sequence

HAB Packets on aprs.fi

Understanding and Analyzing the Data

2017-04-07 21:16:50 EDT: N1FD-11 > CQ, WIDE1-1, WIDE2-2, gAR, NX1W: !4242, 70N/07135.41WO148/000/A=000351RadBug, 16C, 984mb, 3, 001												
				///							T	
Date/Time	НАВ	APPS Msg. Header	Packet	iGate	Latitude	Longitude	Heading	Speed	Altitude	Temperature	Pressure	Packet #
Date/ fille	Callsign	Ar to misg. header	Source	Callsign	(deg -	(deg - min)	(deg. N)	(m/s)	(feet)	(deg. C)	(mBar)	Facket#
	Consign		(iGate)	cunsign	min)	(acg min)	(0.5,1.4)	(11, 5)	(1000)	(acg. c)	(inserv	
Date/Time	HAB	APRS Msg. Header	Packet	iGate	Latitude	Longitude	Heading	Speed	Altitude	Temperature	Pressure	Packet #
	Callsign		Source	Callsign	(deg -	(deg - min)	(deg. N)	(m/s)	(feet)	(deg. C)	(mBar)	
▼	•	•	(iGat 🔻	•	min) 💌	•	-	-	Ψ.	-	*	•
2017-04-07 21:16:50 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	148	0	351	16	984	1
2017-04-07 21:17:50 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	AB1OC-10	42 42.70N	71 35.41W	148	0	354	10	984	2
2017-04-07 21:18:50 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	148	0	360	8	985	3
2017-04-07 21:19:50 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	AB1OC-10	42 42.70N	71 35.41W	148	0	360	6	985	4
2017-04-07 21:20:50 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	148	0	347	5	985	5
2017-04-07 21:21:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	148	0	344	5	985	6
2017-04-07 21:22:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	174	0	347	4	985	7
2017-04-07 21:23:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	174	0	344	4	985	8
2017-04-07 21:24:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	325	0	347	4	985	9
2017-04-07 21:24:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	325	0	351	4	985	10
2017-04-07 21:26:52 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	325	0	351	4	985	11
2017-04-07 21:27:52 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	325	0	351	4	985	12
2017-04-07 21:28:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	325	0	351	4	985	13
2017-04-07 21:29:52 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	AB1OC-10	42 42.70N	71 35.41W	109	0	351	4	985	14
2017-04-07 21:30:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	109	0	347	4	985	15
2017-04-07 21:31:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	109	0	351	4	985	16
2017-04-07 21:32:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	266	0	360	4	985	17
2017-04-07 21:33:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	266	0	360	4	985	18
2017-04-07 21:34:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	266	0	360	4	985	19
2017-04-07 21:35:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.70N	71 35.41W	269	0	364	4	985	20
2017-04-07 21:36:51 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	NX1W	42 42.71N	71 35.41W	269	0	367	8	985	21
2017-04-07 21:37:52 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	AB1OC-10	42 42.71N	71 35.41W	45	1	364	13	984	22
2017-04-07 21:38:52 EDT	N1FD-11	CQ,WIDE1-1,WIDE2-2	qAR	AB1OC-10	42 42.71N	71 35.41W	45	0	367	15	984	23

Using APRS.fi to Track our HAB

Hand-on Activity

HAB Packets on aprs.fi

115

Using a Radio to Track our HAB

Hand-on Activity

HAB Packets on aprs.fi

Satellite Tracker Backup to APRS - <u>See HAB's Current Location</u>

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Space Communications – What's up and how can we communicate using it?

Flight Prediction Inputs

We'll use an online software package from a HAB prediction site: <u>http://predict.habhub.org/</u>

119

HAB Design Parameters

- Balloon Size: 1500 g
- Payload weight including parachute: 1040 g
- Positive Lift: 1150 g
- Burst altitude: 33,210 m a.s.l.

(~ 108,900 ft. or ~20 mi)

- Required Helium: 133 cu. ft.
- Average Ascent Rate: 5.02 m/s
- Ascent time: 111 mins
- Descent time: 42 mins
- Final descent speed: 6.32 m/s (~ 14 mph)
- Total flight time: 153 mins (2 hrs and 35 mins)

These parameters are conservative and should keep our HAB's total flight time under 2-3/4 hours and our landing speed safe.

Space Communications

What will we be learning about?

- What's in space that is used for communications?
- How do communications satellites work?
- How do orbits work?
- What about Doppler Shift?
- Space Communications Demonstrations
 - Satellite Ground Station
 - Communicating through a satellite
 - Receiving an image from the ISS
 - ISS Astronaut Contact using Amateur Radio

ISS Communications

Multiple channels support different purposes

Transmission of voice, data, and video for multiple users

ISS Communications

Multiple channels for different purposes

Russian Luch Satellite* (in geosynchronous orbit) **Russian Lira** (transmits direct to ground) members Ham Radio (transmits directly to the ground)

Multiple Radio Channels (frequencies) Aboard The ISS Serve Different Purposes

ISS Communications

Multiple channels for different purposes

Multiple Radio Channels Aboard The ISS Serve Different Purposes

- S and Ku band links use Tracking and Data Relay Satellites (TDRS) to communicate with NASA ground control
 - S-Band links (2-4 GHz) for audio communications
 - Ku-Band links (12 18 GHz) for audio, video and high-speed data
 - Ku-band system also provides 10 Mbit/s network access to laptops on ISS
- UHF links (300 MHz 1 GHz) for space walks and near-space audio comms.
- VHF (~145 MHz) links for Amateur Radio ground communications

A Modern Satellite Examples

Amateur Communications AO-92 (LEO)

DirecTV 14 Satellite (GEO)

GPS Phase III Satellite (MEO)

Satellite Launch and Deployment (PSLV-C40 Mission Deploys Satellites Including AO-92)

Amateur CubeSat – What's inside?

Amateur Communications AO-92 (LEO)

AO-92 (Fox-1) Boards

AO-92 Internal Electronics

How Large is a CubeSat?

Kepler's Three Laws Of Orbital Motion

ES OF AN ELLIPSE

ty of an allipse

ent by two points, each called her called foot

PROPERTIES OF AN ELLIPSE

Second basic property of an atligue

 The amount of "Nathaning" of the ellipse is called, the elipseries the flatfar the ellipse.
 the more eligentric of is.

Video on YouTube

Lots of Objects in Earth Orbit

How do we know where things are?

We can use Kepler's Laws to Understand and Characterize Earth Orbits

How Do Communication Satellites Work?

Geostationary orbit

Video on YouTube

CLOSE

	Date	Time	Azimuth	Elevation	Downlink	Uplink
Rise	2017/05/09	08:24:22	337.2	0.0	436.79960	145.84847
Max:	2017/05/09	08:27:57	9.5	3.4	436.79501	145.85000
Set:	2017/05/09	08:31:30	41.5	0.0	436.79046	145.85152
Rise	2017/05/09	10:05:01	337.7	0.0	436.80261	145.84746
Max:	2017/05/09	10:10:41	34.3	13.0	436.79500	145.85000
Set:	2017/05/09	10:16:18	90.6	0.0	436.78738	145.85254
Rise	2017/05/09	11:45:09	327.3	0.1	436.80468	145.84677
Max:	2017/05/09	11:51:59	55.4	69.7	436.79496	145.85001
Set:	2017/05/09	11:58:46	141.3	0.0	436.78531	145.85324
Rise	2017/05/09	13:26:19	306.5	0.0	436.80296	145.84734
Max:	2017/05/09	13:31:52	251.2	13.6	436.79501	145.85000
Set:	2017/05/09	13:37:24	195.8	0.0	436.78711	145.85263

Kepler's Laws plus a set of numbers let software predict orbital paths

Polar LEO Satellite Orbit

Video on YouTube

Covering the Earth

Satellite Doppler Shift

Changing Radio Frequencies

Radio waves sent from fast moving object also experience Doppler Shift

Basics of The Doppler Effect

- LEO Satellites and the ISS are in low orbits and must move at high speeds
 - Typical orbital velocity ~= 17,100 mph or 4.8 miles/sec
- Doppler frequency shift is in the range
 of 10 30 KHz for UHF and higher links

Satellite Ground Station must adjust its transmit (uplink) and receive (downlink) radio frequencies to compensate for Doppler Shift.

Amateur Radio Space Ground Station

- Computer software tracks space objects & corrects doppler shift
- Amateur Radio Transceiver creates uplink & downlink)
- Audio Gear so we can listen and talk

Tracking Objects Using a Computer

134

Space Communications

Computer Controlled Satellite Ground Station Operation

PORTABLE SATELLITE STATION 2.0 ANITA AB1QB FRED AB10C

LEO Communications Satellite Demo

Linear Transponder Satellite FO-29

ISS Crew Contact Via Amateur Radio

Hudson Memorial School

HUDSON MEMORIAL SCHOOL ISS CREW CONTACT DECEMBER 2018

ISS Contact Video on Vimeo

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Launching our HAB – Final preparations

HAB Design Parameters

- Balloon Size: 1500 g
- Payload weight including parachute: 1040 g
- Positive Lift: 1150 g
- Burst altitude: 33,210 m a.s.l.

(~ 108,900 ft. or ~20 mi)

- Required Helium: 133 cu. ft.
- Average Ascent Rate: 5.02 m/s
- Ascent time: 111 mins
- Descent time: 42 mins
- Final descent speed: 6.32 m/s (~ 14 mph)
- Total flight time: 153 mins (2 hrs and 35 mins)

These parameters are conservative and should keep our HAB's total flight time under 2-3/4 hours and our landing speed safe.

Update HAB's Flight Path Prediction

Website starts you in the UK: Zoom out using mouse and move map to MA or NH We'll use an online software package from a HAB prediction site: <u>http://predict.habhub.org/</u>

- Click Set With Map in order to use the mouse to click the balloon's starting point or use Lat/Lon coordinates
 - Winchester, NH elem. School: Lat/Lon = 42.767896, -72.377026
- Our *Launch Altitude* would be 145 m (<u>from web</u>)
- Select a Launch Time (UTC) and Launch Date
 - Look UTC up online in case your unfamiliar
- Use results from High Altitude Science Balloon Calculator and feed into Ascent Rate and Burst Altitude
- Use the parachute chart to estimate the *Descent Rate*
- Run the Prediction!

FAA Notification Filing a NOTAM

- Best to notify the FAA about our launch time and intended course
 - Do this by filing a NOTAM (Notice to Airman)
- Communicate our launch location based upon the nearest VOR Beacon (used for Airplane navigation)
- Sectional VOR navigations charts at <u>http://vfrmap.com/</u>
 - Used by pilots to Navigate via VOR

VOR = Very high-frequency Omnidirectional Ranges. A radio navigation system used by pilots.

FAA Notification How VOR Works

How VOR Works Video

VOR = Very high-frequency Omnidirectional Ranges. A radio navigation system used by pilots.

Example NOTAM

For Winchester, NH Launch Site

- We are filing a NOTAM for a "high-ball" [Weather Balloon]
- Launching Echo-Echo-November VOR, radial two-six-zero, at 4.6 nautical miles"
- Launching April one-zero between one-four and one-five hundred zulu
- Estimated time to sixty thousand feet no later than one-six thirty zulu
- Estimated time of landing no later than one-eight hundred zulu
- Estimated flight trajectory of high-ball is North-East
- White balloon fifteen feet in diameter, red parachute, weighting 3 pounds
- Our contact information

Filing a NOTAM

Launch Location

- Closest VOR beacon is Keene, NH (Call sign E-E-N)
- Launch site heading from this VOR is 260^o
- Distance from VOR beacon is approx. 8.6 km or 4.6 nautical miles
 - 1 km = 0.54 nautical mi.

"Launching Echo-Echo-November VOR, radial two-sixzero, at 4.6 nautical miles"

Filing a NOTAM Key Flight Point Time Estimates

- "Launching April one-zero between one-four and <u>one-</u> <u>five hundred</u> zulu"
 - Launch will be on May 13th between 10 am and 11 am
 - To convert Local to Greenwich Mean Time (zulu): add 4 hours
 - 10 am = 14:00z and <u>11am = 15:00z</u>
- "Estimated time to sixty thousand feet no later than one-six thirty zulu"
 - Worst case time to 60,000 feet of 90 minutes (16:30z) or 12:30 pm local time
- "Estimated time of landing no later than one-eight hundred zulu"
 - Worst case flight time is no more than 3 hours (18:00z) or 2 pm local time

Example NOTAM

For Winchester, NH Launch Site

- We are filing a NOTAM for a "high-ball" [Weather Balloon]
- Launching Echo-Echo-November VOR, radial two-six-zero, at 4.6 nautical miles"
- Launching April one-zero between one-four and one-five hundred zulu
- Estimated time to sixty thousand feet no later than one-six thirty zulu
- Estimated time of landing no later than one-eight hundred zulu
- Estimated flight trajectory of high-ball is North-East
 - Based on final course prediction will be NE, E, or SE
- White balloon fifteen feet in diameter, red parachute, weighting 3 pounds
- Our contact information

High Altitude Balloon What is it?

Flight Platform & Parachute

HAB During Ascent

High Altitude Balloons

Payload Components

High Altitude Balloons Flight Prep, Launch, Tracking, and Recovery

HIGH-ALTITUDE BALLOON LAUNCH 2

A NASHUA AREA RADIO SOCIETY

STEM LEARNING PROJECT

Vimeo link to HAB-2 video

Amateur Radio

Open House

- Tour an active Amateur Radio station and learn more about amateur radio communications
- Get on the air and talk to Amateurs around the world
- Make a contact through a satellite in space
- Use Radio Direction Finding to locate a hidden radio transmitter
- See how we use computers in communications

Amateur Radio

Field Day – June 23rd & 24th

- Tour an Amateur Radio emergency communications installation
- Learn about antennas, radio equipment and gear
- Get on the air and talk to Amateurs across the USA
- Make a contact through a satellite in space
- Use Radio Direction Finding to locate a hidden radio transmitter
- See how we use computers in communications
- <u>Field Day 2017 Video</u> & <u>Field Day 2016 Video</u>

HIGH ALTITUDE BALLOON

CARRYING AMATEUR RADIO

Post-flight Data Analysis – The following is an example of what we'll be doing together

Atmosphere Phenomena

What did our Flight Computer record?

- HAB's flight computer measured and recorded data about our flight:
 - Position, Heading and Speed
 - Altitude
 - Temperature and Pressure
- Amateur Radio APRS Transmitter sent this data to ground

Pressure and Temperature

Actual HAB Flight Computer Data

Date ,Time ,Latitude ,Longitude ,Head,Km/h,Alt-m ,Lock,Temp C,Pa 10/28/17,17:36:42,+043.30393,-071.11218,0088,0027,+035939,0003,-001.4,000301 10/28/17,17:36:48,+043.30395,-071.11161,0083,0033,+035955,0003,-001.1,000073 10/28/17,17:36:54,+043.30419,-071.11113,0039,0027,+035811,0003,-001.6,000180 10/28/17,17:37:00,+043.30432,-071.11008,0082,0046,+035527,0003,-002.0,000580

We compared HAB flight data to our predictions to see how well they matched and we analyzed our data.

HAB-2 Flight Path

Actual vs. Predicted

HAB-2 flew further, longer and higher than predicted – Probably not quite enough Helium in the Balloon... (Actual Burst Altitude was ~118,000 ft or ~ 22 mi)

HAB-2 Atmospheric Measurements

HAB-2 Speed Measurements

Ground and Descent Speed

- Ascent rate did not change much between launch and burst
- Jetstream winds increased ground speed significantly
 - ~35,000 50,000 ft
 - Max of ~100 mph!
- Not enough air above 50,000 ft to move HAB-2 along ground
- Descent after burst was very rapid until about 50,000 ft

			Ground		Ascent/	
5 14 5	Time	Time After	Speed		Descent	
Date	(UTC)	Launch	(mph)	Altitude (ft)	Rate (mph)	Notes
10/28/17	18:21:54	3:13:24	25	954	-12	
10/28/17	18:22:00	3:13:30	22	859	-11	500 AGL
10/28/17	18:22:06	3:13:36	7	768	-10	
10/28/17	18:22:12	3:13:42	7	666	-12	
10/28/17	18:22:18	3:13:48	15	567	-11	200 ft AGL
10/28/17	18:22:24	3:13:54	23	469	-11	1
10/28/17	18:22:30	3:14:00	19	351	-13	Touchdown!

- Parachute descent rate was about 12 mph at landing
 - About what we expected

BACKUPS AND OLD SLIDES

Our Sessions Weekly One-Hour Format

- 1. A: Project Introduction What will we be doing?
- 2. B: Balloon Physics 1 Forces effecting our HAB's flight and burst altitude
- 3. C: Balloon Physics 2 HAB's weight and burst altitude revisited
- 4. D: The Atmosphere Temperature and Pressure our HAB will encounter
- 5. E: Descent through the Atmosphere Parachute operation
- 6. F: HAB Flight Path Prediction It's mostly about the Jetstream
- 7. G: HAB Tracking and Radios 1 Following our HAB and its data
- 8. H: HAB Tracking and Radios 2 Hands on with Tracking Tools
- 9. I: Space Communications What's up & how do we communicate using it?
- 10. J: Launching Our HAB Final preparations
- 11. K: Post-flight Data Analysis
- 12. L: Preparing Our Project Report

Will include a variety of Hands-on Activities and Demos

Our Sessions Weekly Two-Hour Format

- A: Project Introduction What will we be doing?
 B: Balloon Physics 1 Forces effecting our HAB's flight and burst altitude
- C: Balloon Physics 2 HAB's weight and burst altitude revisited
 D: The Atmosphere Temperature and Pressure our HAB will encounter
- E: Descent through the Atmosphere Parachute operation
 F: HAB Flight Path Prediction It's mostly about the Jetstream
- G: HAB Tracking and Radios 1 Following our HAB and its data
 H: HAB Tracking and Radios 2 Hands on with Tracking Tools
- 5. I: Space Communications What's up & how do we communicate using it? Second Hour would involve hands-on use of space comms. ground station
- 6. J: Launching Our HAB Final preparations (classroom or during Open House?)

Amateur Radio Open House

- 7. K: Post-flight Data Analysis (may be two, 1 hour sessions...)
 - L: Preparing Our Project Report

Will include a variety of Hands-on Activities and Demos

Demonstrations and Hands-on Activities

Demo	Purpose	HAB Class Session	Instructor Equipment	Classroom Support
HAB Platform and Components	See and understand HAB Platform and Balloon	Sec. A, Sec. E (Parachute), Sec. J	Platform, Camera, Equipment, and Balloons	None
HAM Radio Distant (DX) Contacts	Introduce Ham Radio DX Contacts	First or second and subsequent	Remote HF Radio System, QSL Card Books	Internet/WiFi and AC power
Electromagnetic Spectrum (EMS)	Understand the EMS and where HAM Radio & the HAB fit	First or second	RF Spectrum Roll, EMS Handouts	None
Buoyancy Demo	Demonstrate Archimedes Principal	Sec. B – Balloon Physics 1	Beaker, Gram Weight, Ice, Water	None
HAB Flight Modeling	Apply Physics and Weather to predict the HAB's flight path	Sec. B, F, and J	Data for calculators	Student Computers with Internet Access
Weighting HAB Components	Measure weight of HAB Platform	Sec. C – Balloon Physics 2	Hanging scale, check weights, cal. water bottle	Calibrated gram scales, place to hang scale
Communicating via Morse Code	Understand methods for comm. in marginal conditions	TBD	Practice oscillators/keys, Morse Code Charts	None
HAM Radio Local Contacts	Understand local Ham Radio Contacts & Emergency Comms.	TBD	Handy Talkies, Emergency Go Kit w/antenna	Location that is not RF blocked, AC power
Electronic Circuit Experiments & Construction	Introduce experimental electronics construction and design	TBD	PIXIE CW Trans, Oscilloscope Kit, KX2, Touch CW Paddles, other home built projects	AC Power, Internet/WiFi
Radio Direction Finding (RDF)	Understand RDF for emergency and compliance purposes	TBD	Handy Talkies, Directional Antennas, Fox Transmitters	"Hide" transmitter in classroom
Transmit Antennas	Understand radio transmitter antenna systems	TBD	Buddipole ant., dummy load, KX3, SWR meter	Space in classroom to setup ants., AC power
Ham Radio Contacts through Satellites	Experience and learn about Space Communications	Sec. I – Space Comms. or Open House	Portable Satellite Ground Station, Satellite, pass predictions	Loc. with outside access to setup equip., AC power & Internet/WiFi

Our Sessions

Some things we'll need

- HDMI Connection to projector with audio for classroom sessions
- Internet Access Will need unblocked access for presenter's PC and radio gear. The following are the MAC addresses:
 - Windows Laptop Mac Address C8-FF-28-3C-B1-E7
 - Backup Laptop Mac Address 48-51-B7-7D-7E-A9
 - MacBook Air Mac Address 34-36-3B-5D-DB-08
 - Remote Radio #1 Mac Address A0-C5-89-05-59-56
 - Remote Radio #2 Mac Address 88-12-4E-15-FA-0C
 - ISS/Satellite Antenna Controller Mac Address B8-27-EB-D1-27-C8
- Access to laptop's with Internet access for students to use during some of our sessions
 - Expect we'll want them to work in groups...
 - See table which follows for details
- Gram scales for our second session together would be helpful.
- We'll want to work through plans to test our space communications ground station at your school

These items will allow us to support Video Presentations, Hands-on Activities, and Demos

Air Density in the Atmosphere

Density

Use gas-specific form of Ideal Gas Law:

 $PV = mR_{gas}T$

$$\frac{m}{V} = \rho = \frac{P}{R_{gas}T}$$

• Density can be shown to decrease with increasing altitude due to how pressure and temperature vary with altitude in previous chart

Terminal Velocity Formula

The Air Drag Force

